Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 59: 102686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338895

RESUMO

Human DNA samples can remain unaltered for years and preserve important genetic information for forensic investigations. In fact, besides human genetic information, these extracts potentially contain additional valuable information: microbiome signatures. Forensic microbiology is rapidly becoming a significant tool for estimating post-mortem interval (PMI), and establishing cause of death and personal identity. To date, the possibility to recover unaltered microbiome signatures from human DNA extracts has not been proven. This study examines the microbiome signatures within human DNA extracts obtained from six cadavers with different PMIs, which were stored frozen for 5-16 years. Results demonstrated that the microbiome can be co-extracted with human DNA using forensic kits designed to extract the human host's DNA from different tissues and fluids during decomposition. We compared the microbial communities identified in these samples with microbial DNA recovered from two human cadavers donated to the Forensic Anthropology Center at Texas State University (FACTS) during multiple decomposition stages, to examine whether the microbial signatures recovered from "old" (up to 16 years) extracts are consistent with those identified in recently extracted microbial DNA samples. The V4 region of 16 S rRNA gene was amplified and sequenced using Illumina MiSeq for all DNA extracts. The results obtained from the human DNA extracts were compared with each other and with the microbial DNA from the FACTS samples. Overall, we found that the presence of specific microbial taxa depends on the decomposition stage, the type of tissue, and the depositional environment. We found no indications of contamination in the microbial signatures, or any alterations attributable to the long-term frozen storage of the extracts, demonstrating that older human DNA extracts are a reliable source of such microbial signatures. No shared Core Microbiome (CM) was identified amongst the total 18 samples, but we identified certain species in association with the different decomposition stages, offering potential for the use of microbial signatures co-extracted with human DNA samples for PMI estimation in future. Unveiling the new significance of older human DNA extracts brings with it important ethical-legal considerations. Currently, there are no shared legal frameworks governing the long-term storage and use of human DNA extracts obtained from crime scene evidence for additional research purposes. It is therefore important to create common protocols on the storage of biological material collected at crime scenes. We review existing legislation and guidelines, and identify some important limitations for the further development and application of forensic microbiomics.


Assuntos
Microbiota , Ácidos Nucleicos , Cadáver , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética
2.
J Forensic Leg Med ; 82: 102223, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34343925

RESUMO

Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.


Assuntos
Bactérias/classificação , Bactérias/genética , Impressões Digitais de DNA/métodos , Microbiota , RNA Ribossômico 16S/análise , Pele/microbiologia , Tato , Adulto , Idoso , Amelogenina/genética , DNA/isolamento & purificação , Conjuntos de Dados como Assunto , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Projetos Piloto , Análise de Sequência de RNA
3.
J Proteome Res ; 20(5): 2533-2546, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683123

RESUMO

Bone proteomic studies using animal proxies and skeletonized human remains have delivered encouraging results in the search for potential biomarkers for precise and accurate post-mortem interval (PMI) and the age-at-death (AAD) estimation in medico-legal investigations. The development of forensic proteomics for PMI and AAD estimation is in critical need of research on human remains throughout decomposition, as currently the effects of both inter-individual biological differences and taphonomic alteration on the survival of human bone protein profiles are unclear. This study investigated the human bone proteome in four human body donors studied throughout decomposition outdoors. The effects of ageing phenomena (in vivo and post-mortem) and intrinsic and extrinsic variables on the variety and abundancy of the bone proteome were assessed. Results indicate that taphonomic and biological variables play a significant role in the survival of proteins in bone. Our findings suggest that inter-individual and inter-skeletal differences in bone mineral density (BMD) are important variables affecting the survival of proteins. Specific proteins survive better within the mineral matrix due to their mineral-binding properties. The mineral matrix likely also protects these proteins by restricting the movement of decomposer microbes. New potential biomarkers for PMI estimation and AAD estimation were identified. Future development of forensic bone proteomics should include standard measurement of BMD and target a combination of different biomarkers.


Assuntos
Proteoma , Proteômica , Animais , Autopsia , Osso e Ossos , Humanos , Mudanças Depois da Morte
4.
Artigo em Inglês | MEDLINE | ID: mdl-32117804

RESUMO

The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.


Assuntos
Relógios Circadianos , Microbiota , Ritmo Circadiano , Humanos , Sistema Imunitário , Simbiose
5.
Front Immunol ; 10: 2364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681274

RESUMO

Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequently by Candida albicans, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1ß and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against Candida infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Candida albicans/imunologia , Candidíase Vulvovaginal , Indóis/farmacologia , Interleucina-18/imunologia , Interleucinas/imunologia , Receptores de Hidrocarboneto Arílico/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/genética , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/patologia , Feminino , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-18/genética , Interleucinas/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...